The Role of Nitrogen Fertilizer on the Growth Performance of Garlic (Alliums Sativum L.) at Wolaita Sodo University

Missganaw Yitayih1, Taye Buke2* and Woldemariam Woelore3
1 Department of Horticulture, Wolaita Sodo University, P.O. Box: 138.
2 Department of Horticulture, Wolaita Sodo University, P.O. Box: 138.
3 Department of Horticulture, Wolaita Sodo University, P.O. Box: 138.
*Corresponding author email id: tayebuke@yahoo.com

Abstract – Garlic is a potential vegetable crop in Ethiopia in general and wolaita in particular. However, there was no much information on agronomic practice especially about fertilizer application in the area. The field experiment was conducted using a local variety is called Nech shinkurt at Wolaita so university experimental sit to see the growth performance of garlic to different rate of nitrogen fertilizers. Four level of nitrogen rates (0 kgN/ha, 50 kg N/ha, 100 kgN/ha, 150 kgN/ha). The plots were arranged in Randomized Complete Block Design (RCBD) 3 with replication. Growth parameters such as plant height, leaf length, fresh weight, dry weight were collected and analyzed by using SPSS software. The result of the study showed that application of 100 kg N/ha significantly increased the growth of garlic than other treatment s. The application rate of 100 kgN/ha significantly enhanced leaf length. This study further confirms the role of nitrogen fertilizers in increasing growth in garlic production. Form the result of the study application rate of 100 kgN/ha may be recommended for growth of garlic particularly in the study area. This would greatly benefits of farmers in area where supply of nitrogen fertilizer is low and cases where farmers cannot afford the cost of high fertilizer input. Further research had to be conducted to evaluate the effect of nitrogen fertilizers on the growth.

Keywords – Nitrogen, Fertilizer, Growth, Performance Garlic.

I. INTRODUCTION

Garlic (Alliums s.) belongs to the family Alliaceus, other crop in this family are onion (Alliumcsepa L) and Leek. Garlic is the second most widely cultivated bulb crop after onions. It is an erect annual herb that can reach height of 75-90 cm and growth during dry and mild winter season (Brewster, 1994). Garlic is believed to have originated in central Asia (India, Afghanistan, China, Russia etc.). And spread to other parts of the world through trade and colonization (Tindal, 1986). The production of garlic stood at about 10 million tons per annum which is only about 10% 5hat of bulb onions (FAO, 2007). Garlic is among the most important bulb vegetable which is used as spice and flavoring agent for goods (Valise et al, 1997). It is widely used around the world for its pungent flavor as seasoning or condiment. It is fundamental component in many or most dishes of various countries in the world including Ethiopia. Garlic adds a test to goods as well as it helps to make them more palatable and digestible. It is an important ingredient in the leading cuisine around the world. In Ethiopia, garlic is used while preparing foods, particularly some kinds of stew and in making dried foods storage (Rubatzky and Yamagch, 1997). All part of the plant has a use. The cloves are used as seed, for consumption (row or cooked and for medicinal purpose. The leaves, stems (Scape) and flowers (bulbils) on the head (Spathe) are also edible and are most often consumed while immature and still tender. The papery protective layers of skins over various parts of the plant and the roots attached to the bulb are the only parts not considered palatable (Kero, 2010).

Garlic contains different use full minerals, vitamins and may other substance used for heath of human beings. It also contains more than 200 chemical compounds such as allicin, allin and ajoene, allience, peroxides and Myrosinase Agene contribute to anticoagulant action of garlic thus, garlic can right fully be called one of nature’s wonders because it in habits and kills bacteria, fungi parasites, lower blood pressure, blood cholesterol and blood sugar, prevents blood clotting, protects the liver and exhibits to more property (Sovoua and Sova, 2004).

There are many biotic and a biotic factors that contribute for the low productivity of garlic in Ethiopia some of the major causes of low garlic yields are decaling soil fertility, insufficient and inefficient use of fertilizers resulting in severe nutrient depletion in the soils, in appropriate agronomic practices, absence of proper pest and disease managements etc. (Teweldebrhan, 2009, Workuand Dejen, 2012). Availability of nitrogen is a prime importance for growing plant as it is a major and indispensable source of protein and nucleic acid molecules (NaruKa etal, 2005).

Objective

To determine the effect of nitrogen fertilizer on the growth performance of garlic.

II. MATERIALS AND METHODS

2.1. Description of the Study Area

The experiment was conducted at horticulture research filed in Wolaita Sodo University. Wolaita Sodo University is 390 km away from Addis Ababa; it has altitude of 1800m asl, longitude of 60°49′ north and latitude of 37°45′ East it is the area the annual mean. Temperature is 20°c of the annual mean rain fall is 1212mm. The soil of the area is loam types (Wolaita Sodo student hand book, 2009).

2.2. Experimental Material

The materials was use during the experiments area local garlic clove, meter, rulers, peg, axes, watering cans, spades,
2.3. Experimental Design and Treatment

The experimental was conducted in randomized complete Block Design (RCBD) with three treatments and three replications. This design is aimed at removing variability in experimental plots and reduces experimental error to precisely see the difference between treatments. The total experimental area was \((7 \times 4.8)\) m\(^2\) having the total area 33.6m\(^2\) which was divided in the three homogenous blocks or replication and each blocks contains complete set of treatments which was allocated to the plot within each block at random plots or beds in a block was equal to the number of treatment and one treatment was replicated three times.

\[T_1 = 0 \text{ kgN/ha}, T_2 = 50\text{kgN/ha}, T_3 = 100\text{kgN/ha}, T_4 = 150\text{kgN/ha} \]

Table 1. Detail of fertilizer treatment used in this study.

<table>
<thead>
<tr>
<th>Treatment code</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Control</td>
</tr>
<tr>
<td>T2</td>
<td>50kg N/ha</td>
</tr>
<tr>
<td>T3</td>
<td>100kgN/ha</td>
</tr>
<tr>
<td>T4</td>
<td>150kgN/ha</td>
</tr>
</tbody>
</table>

2.4. Experimental Procedure

Garlic variety locally called “local Nech shinkunt collected from the local farmers (market) around Sodo Town. The clove was soaked with water before sowing. A garlic seedling was later thin to one plant per stand. The treatment [three level of nitrogen] was applied two weeks after planting through side placements. Weeds were controlled through hand. Weeding to reduce competition for space, water, light and nutrient between the crops and weed. The field border was kept clean to minimize encroachment by insects and rodents.

2.5. Data to be Collect

Growth related parameters such as plan height, leaf number per plant and leaf length was recorded at different stages of crop growth and development. Garlic crop is characterized by three growth stages; sprouting stage (20-30 days) from sowing, shoot growth stage. From the end of sprouting until 40 days after sowing and bulb growth stage, during the inductive stage (from sprouting up to 90 days and during morphogenetic stage (80-170) and harvest (maturity stage (Arguello et al, 2000). Data was collected three weeks after the treatment. The data was recorded at three growth stages or the plant at sprouting stage, shoot growth stage and bulb growth stage. The parameter was determined in the following ways.

Plant Height

This was taken from a sample of three randomly selected garlic plants marked with in each plot; a ruler measuring the height from the ground level to the top most leaf.

Number of Leaves per Plant

Visual counting of leaves on the three randomly selected plants was made and number was recorded for each plant. The mean value was then calculated for each plot.

Leaf Length

This was again taken from three randomly selected garlic plants marked with in each plot. A ruler was used for measuring the length from the point leaf attached to its leaf sheath up to the end tip of the leaf.

Fresh Weight

Was measured from three samples at maturity stage by using weighing balance.

Dry Weight

Was measured from three sample plant by oven draining.

2.6. Data Analysis

The raw data of each parameter per plot was recorded and analyzes using analysis of their variance (ANOVA).

The data was anal sized wing SAS software. Fishers distribution (F- calculated) will be calculated from the data profanity of 5% will be used to calculate the tabulated value of F (F- tab) and committing of type one error. The treatment means will be separated using the least significant difference (LSD) at 5% level of probability.

III. RESULT AND DISCUSSION

Application of nitrogen fertilizer had significant effect on the growth of garlic at sprouting and shoots growth stages (table 2).

Table 2: Effect of different rate of nitrogen on growth parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T1 = 0 kg N</th>
<th>T2 = 50 kg N</th>
<th>T3 = 100 kg N</th>
<th>T4 = 150 kg N</th>
<th>LSD at 5%</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant height</td>
<td>14.63</td>
<td>19.46</td>
<td>21.59</td>
<td>22.22</td>
<td>1.9</td>
<td>14.9</td>
</tr>
<tr>
<td>Number of leaves</td>
<td>18.66</td>
<td>21.5</td>
<td>22.07</td>
<td>21.9</td>
<td>1.23</td>
<td>7.4</td>
</tr>
<tr>
<td>Leaf length</td>
<td>88.54</td>
<td>112.78</td>
<td>117.84</td>
<td>110.25</td>
<td>7.6</td>
<td>10.4</td>
</tr>
<tr>
<td>Fresh weight</td>
<td>20.02</td>
<td>20.75</td>
<td>25.29</td>
<td>29.7</td>
<td>4.7</td>
<td>30</td>
</tr>
<tr>
<td>Dry weight</td>
<td>12.12</td>
<td>22.36</td>
<td>26.37</td>
<td>22.13</td>
<td>2.23</td>
<td>15.1</td>
</tr>
</tbody>
</table>

Plant Height

The data recorded in table2 showed that plant height increased the treatment at all stages of growth. There were significantly affected by different rate of fertilizer application.

The minimum plant height was recorded in control (T1) at 14.63 cm). The maximum plant height was recorded in (T4) at 22.22 cm).

Number of Leaves

The results presented in table 2 showed the trend observed in the of leaves produce by plant at different stages growth. The numbers of leaves increased across the treatments at all stages of growth. There were no significant different in the number of leaves per plant among the treatments. The minimum number of leaves was recorded in the control (T1) at (18.66 cm). The maximum number of leaves was recorded in (T4) at (22.07 cm).

Leaf Length

The results presented in table2 showed that the effect of different rates of nitrogen fertilizer on leaf length of garlic. There were significant differences in the leaf length among treatments. Leaf length was significantly affected by different rate of nitrogen application. The minimum leaf length was recorded in (T1) at (88.54 cm). The maximum leaf length was recorded in (T3) at (117.8 cm).
Fresh Weight

The results presented in table 2 showed that the effects of different rate of nitrogen fertilizer on fresh weight of garlic. There were significant differences in fresh weight among the treatments. Fresh weights were significantly affected by different rate of nutrient combinations. The maximum fresh weight was recorded in (T4) at (29.7 cm). The minimum fresh weight was recorded (T1) at (20.02 cm).

Dry Weight

The result presented in table 2 showed that the effect of different rate of nitrogen fertilizers on dry weight of garlic. There was significant difference in the dry weight among the treatments. Dry weight was significantly affected by different rate of nitrogen fertilizers. The maximum dry weight was recorded in (T3) at (26.37 cm). The minimum dry weight was recorded in control (T1) at (12.12 cm).

IV. CONCLUSIONS AND RECOMMENDATION

This study further confirms the role of nitrogen fertilizers increase growth in garlic production. From the result of the experiment, the application rate of nitrogen fertilizer significantly influenced the growth of garlic. This was evidently particularly in leaf length and fresh weight of the plant. The maximum leaf length was produced with the application rate of 100 kgN/ha. This can be attributed to the fact that nitrogen promote vegetative growth in garlic (NaruKa etal, 2005).

Availability of nitrogen is prime important for growing plants as it is a major and indispensable constituent of protein and nucleic acid molecules. It is an integral part of chlorophyll molecules which are responsible for photosynthesis. An adequate supply of nitrogen is associated with vigorous vegetative growth.

REFERENCE

Appendix

Appendix 1. Analysis of variance plant height affected by nitrogen fertilizer rate

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>df</th>
<th>Ss</th>
<th>Ms</th>
<th>Fcal</th>
<th>Ftab at 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRT</td>
<td>3</td>
<td>2</td>
<td>179</td>
<td>5.9</td>
<td>4.76</td>
</tr>
<tr>
<td>Rep</td>
<td>2</td>
<td>2</td>
<td>140</td>
<td>170.2</td>
<td>4.76</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>6</td>
<td>91.6</td>
<td>.167.9</td>
<td>.106.7</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>11</td>
<td>393.2</td>
<td></td>
<td>4.7</td>
</tr>
</tbody>
</table>

CV = 30.6%, LSD = 4.7

Appendix 2. Analysis of variance of leaf length affected by nitrogen fertilizer rate

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>df</th>
<th>Ss</th>
<th>Ms</th>
<th>Fcal</th>
<th>Ftab at 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRT</td>
<td>3</td>
<td>2</td>
<td>351.3</td>
<td>15.3</td>
<td>4.76</td>
</tr>
<tr>
<td>Rep</td>
<td>2</td>
<td>2</td>
<td>340.4</td>
<td>15.3</td>
<td>4.76</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>6</td>
<td>91.6</td>
<td>.167.9</td>
<td>.106.7</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>11</td>
<td>393.2</td>
<td></td>
<td>4.7</td>
</tr>
</tbody>
</table>

CV = 19.9%, LSD = 7.6

Appendix 3. Analysis of variance of plant fresh weight affected by nitrogen fertilizer rate

<table>
<thead>
<tr>
<th>Source of variance</th>
<th>df</th>
<th>Ss</th>
<th>Ms</th>
<th>Fcal</th>
<th>Ftab at 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRT</td>
<td>3</td>
<td>3</td>
<td>5.7</td>
<td>.170.2</td>
<td>4.76</td>
</tr>
<tr>
<td>Rep</td>
<td>2</td>
<td>2</td>
<td>5.9</td>
<td>.170.2</td>
<td>4.76</td>
</tr>
<tr>
<td>Error</td>
<td>6</td>
<td>6</td>
<td>.167.9</td>
<td>.106.7</td>
<td>.106.7</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>11</td>
<td>270.7</td>
<td></td>
<td>4.7</td>
</tr>
</tbody>
</table>

CV = 15.1%, LSD = 2.23

AUTHOR’S PROFILE

Taye Buke Ashango, was born in Sorei Hombba kebele, Boloso soroia woreda of Wolayta Zone on February 23, 1975. He attended his primary, secondary and high school in Dubbo Catholic mission, Areaka and Bodditi schools respectively until 1994. He joined Awassa College of Agriculture in 1995 and graduated with B.Sc. Degree in Plant Production and Dry Land Farming in 1999. He then served as senior expert in different positions for Office of Agriculture in Kacha Bira woreda of Kambata Tambaro zone for three years. And then he was appointed as head of Humbo woreda / district Agriculture and Rural Development Coordination office and worked there until he joined Hawassa University for his M.Sc study. He is lecturer and researcher at Wolaita Sodo University since 2012.